organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hao Shi

The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: shihao@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.048 wR factor = 0.119 Data-to-parameter ratio = 8.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(3aS*,10R*,10aS*,10bS*,13R*,13aR*)-8-Formyl-6-hydroxy-13-methoxy-1,1,7-trimethyl-5-oxo-1,2,3,3a,5,9,10,10a,13,13a-decahydrocyclohepta[c]furo[3,4-e]chromen-10-yl acetate

The title compound, $C_{23}H_{30}O_8$, was prepared from macrocalyxin A and its structure was established from the ESI–MS, ¹H NMR, ¹³C NMR and X-ray crystallographic data. Two unique molecules are present in the asymmetric unit. Received 25 October 2004 Accepted 26 November 2004 Online 4 December 2004

Comment

The title compound, (1), was obtained as an unexpected product when macrocalyxin A in methanol was refluxed in the presence of concentrated sulfuric acid. This reaction was expected to produce a monomethyl acetal, (2), and its methoxy derivative, (3). However, the sole product was the new compound (1). This was a surprising result, as macrocalyxin A has the same framework (Chen *et al.*, 1986, 1987) as enmein (1*S*,4*S*,6*S*,8*R*,9*R*,12*S*,13*S*,16*R*)-6,9-dihydroxy-7,7-dimethyl-17-methylene-3,10-dioxapentacyclo[14.2.1.0^{1,13}.0^{4,12}.-0^{8,12}]nonadecane-2,18-dione), which transforms directly to give two ether products (Fujita *et al.*, 1972). The asymmetric unit of (1) consists of two molecules (Figs. 1 and 2); small differences between the two may be attributed to crystal-packing effects. Data relating to molecule 1 of the asymmetric unit will be used in the discussion that follows.

The crystal packing is shown in Fig. 3. A key difference between macrocalyxin A and enmein is the acetoxy group, which is linked to the conjugated α -methylenecyclopentanone of macrocalyxin A. A possible mechanism for the formation of (1) would be acid-catalysed methanolysis of the acetate group followed by a retroaldol condensation and subsequent

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Perspective view of molecule 1 of the title compound, shown with 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radius. The dashed line indicates an intramolecular hydrogen bond

Figure 2

Perspective view of molecule 2 of the title compound, shown with 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radius. The dashed line indicates an intramolecular hydrogen bond.

isomerization, both of which again require acid catalysis. Compound (1) contains a five-membered ring, two sixmembered rings and one seven-membered ring and some geometrical features of the rings were investigated using PLATON (Spek, 2003). Cyclohexane ring A (C1-C3/C3a/ C10b/C13a) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.521 Å, $\theta = 164.2$ and $\varphi = 274.1^\circ$; ring B (O2/C3a/C10b/C10a/C5a/C5) exists in a halfchair conformation ($Q = 0.499 \text{ Å}, \theta = 48.8 \text{ and } \varphi = 90.8^{\circ}$); seven-membered ring C (C5a/C6-C10/C10a) has Q = 1.026 Å; five-membered ring D (O4/C13/13a/C10b/C11) adopts a twist conformation with C13a exo and C10b endo from the mean plane of the remaining three atoms. The stereochemistry at the A/B and A/D ring junctions is *trans* and *cis*, respectively. Following the rearrangement, the C6 O atom is in the enol form, a tautomer that is stabilized by an intramolecular hydrogen-bonding interaction $[O8-H8O\cdots O1 = 2.495 (4) \text{ Å},$ Table 2]. The formation of a double bond at C5a=C6 generates an extensive conjugated chain for the atoms O1/C5/ C5a/C6/C7/C8/C17/O7.

Experimental

A solution of macrocalyxin A (240 mg) in MeOH (20 ml) was refluxed for 6 h after the addition of concentrated H₂SO₄ (0.8 ml). The reaction mixture was concentrated to 10 ml and poured into a solution of Na₂CO₃ (3.7 g) in ice water; the MeOH was removed under reduced pressure. Extraction with 3×10 ml CHCl₃, washing with 3×10 ml H₂O, drying with anhydrous Na₂SO₄, and evaporation of the solvent left 327 mg of an oily residue. Thin-layer chromatography on silica gel, eluting with CHCl₃, gave the title compound as colorless crystals (54.7 mg). Crystals suitable for X-ray structure analysis were obtained by slow evaporation, at room temperature, of a solution in CHCl₃ and MeOH in a 1:1 ratio. ESI-MS m/z 435 [M + H]⁺, 433 $[M - H]^{-1}$. ¹H NMR (CDCl₃, 400 MHz): δ 0.94 (6H, s, 2 × Me), 1.86 (1H, s, H13a), 2.06 (3H, s, OAc), 2.34 (3H, d, J = 1 Hz, Me), 2.73 (1H, d, J = 4 Hz, H10a), 3.18 (3H, s, OMe), 3.62, 3.99 (2 × 1H, d, AB, J = 9 Hz, H11a, H11b), 4.71 (1H, s, H13), 4.98 (1H, dd, J = 5.5, 12.5 Hz, H3c), 5.55 (1H, m, H10). ¹³C NMR (CDCl₃, 100 MHz): δ 13.0 (CH₃, C-16), 21.4 (CH₃, C-19), 23.2 (CH₂, C-3), 23.4 (CH₃, C-14), 29.4 (CH₂, C-9), 31.1 (C, C-1), 33.1 (CH₃, C-15), 38.0 (CH₂, C-2), 44.5 (CH, C-10a), 46.0 (C, C-10b), 53.4 (CH, C-13a), 54.5 (CH₃, C-20), 74.3 (CH₂, C-11), 78.1 (CH, C-3a), 81.1 (CH, C-10), 98.4 (C, C-5a), 108.5 (CH, C-13), 137.3 (C, C-7), 148.4 (C, C-8), 168.8 (C, C-6), 172.7 (C, C-18), 176.1 (C, C-5), 188.8 (CH, C-17).

Crystal data

$C_{23}H_{30}O_8$	$D_x = 1.300 \text{ Mg m}^{-3}$
$M_r = 434.47$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 4360
$a = 11.6288 (9) \text{ Å}_{1}$	reflections
b = 14.0386 (11) Å	$\theta = 4.3-46.5^{\circ}$
c = 13.7457 (10) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 98.3490 \ (10)^{\circ}$	T = 293 (2) K
V = 2220.2 (3) Å ³	Block, colorless
Z = 4	$0.48 \times 0.35 \times 0.22 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{\min} = 0.724, \ T_{\max} = 0.980$ 13086 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.119$ S = 0.844997 reflections 571 parameters

4997 independent reflections 4028 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.088$ $\theta_{\rm max} = 27.0^{\circ}$ $h = -14 \rightarrow 14$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 11$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0814P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}$ $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1		
Selected geometric	c parameters (A	Å, °).

O1-C5	1.239 (4)	O21-C25	1.223 (4)
C5-C5a	1.446 (5)	C25-C25a	1.456 (4)
C5a-C6	1.365 (5)	C25a-C26	1.366 (4)
C6-C7	1.479 (5)	C26-C27	1.480 (4)
O7-C17	1.206 (5)	O27-C37	1.180 (4)
C7-C8	1.344 (5)	C27-C28	1.351 (4)
C8-C17	1.468 (5)	C28-C37	1.470 (4)
01-C5-O2	116.7 (3)	O21-C25-O22	115.8 (3)
O1-C5-C5a	122.4 (4)	O21-C25-C25a	123.9 (3)
O2-C5-C5a	120.7 (3)	O22-C25-C25a	120.2 (3)
C6-C5a-C5	117.7 (3)	C26-C25a-C25	117.2 (3)
C6-C5a-C10a	120.2 (3)	C26-C25a-C30a	120.4 (3)
C5-C5a-C10a	121.8 (3)	C25-C25a-C30a	121.7 (2)
O8-C6-C5a	123.6 (3)	O28-C26-C25a	124.0 (3)
O8-C6-C7	113.3 (3)	O28-C26-C27	113.3 (3)
C5a-C6-C7	122.8 (3)	C25a-C26-C27	122.7 (3)
C8-C7-C6	119.2 (3)	C28-C27-C26	119.3 (3)
C8-C7-C16	127.2 (3)	C28-C27-C36	125.0 (3)
C6-C7-C16	113.6 (3)	C26-C27-C36	115.6 (3)
C7-C8-C17	121.6 (3)	C27-C28-C37	120.6 (3)
C7-C8-C9	121.6 (3)	C27-C28-C29	122.5 (3)
C17-C8-C9	116.8 (3)	C37-C28-C29	116.7 (3)
O1-C5-C5a-C6	-4.2 (5)	O21-C25-C25a-C26	-2.8 (5)
C5a-C6-C7-C8	-45.4 (4)	C25a-C26-C27-C28	-42.9 (4)
C6-C7-C8-C9	-9.2(4)	C26-C27-C28-C29	-2.6(4)
C7-C8-C17-O7	179.1 (4)	C27-C28-C37-O27	165.4 (4)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
08-H8O···O1	0.82	1.78	2.495 (4)	146
O28-H28O···O21	0.82	1.80	2.526 (3)	146
$O28{-}H28O{\cdots}O23^i$	0.82	2.56	3.125 (3)	127

Symmetry code: (i) $1 - x, \frac{1}{2} + y, 1 - z$.

H atoms were placed in geometrically calculated positions (C–H = 0.93–0.98 Å), and the methyl and hydroxy H atoms were refined in the riding-model approximation, with $U_{\rm iso} = 1.5U_{\rm eq}$ of the corresponding carrier atom. The remaining H atoms were refined with $U_{\rm iso} = 1.2U_{\rm eq}$ of the corresponding carrier atom. Both independent molecules have the same absolute configuration, although this could not be determined reliably from the X-ray data and Friedel reflections were merged. The relative stereochemistry is shown in the scheme and figures.

Figure 3

Crystal packing diagram for the title compound viewed normal to the (100) plane. H atoms have been omitted for clarity, except for these involved in hydrogen bonds.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

References

- Bruker (1999). SMART (Version 5.611), SAINT (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. Z., Yao, W. X. & Zu, B. J. (1986). Kexue Tongbao, 31, 950-955.
- Chen, Y. Z., Wu, Z. W. & Cheng, P. Y. (1887). *Chin. J. Org. Chem.* 1, 21–28. Cremer, D. & Pople, J. A. (1975). *J. Am. Chem. Soc.* 97, 1354–1358.

Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.

Fujita, E., Fujita, T., Okada, Y., Nakamura, S. & Shibuya, M. (1972). *Chem.*

Pharm. Bull. **20**, 2377–2383. Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. University of

Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.